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Abstract A nonlinear theory of quantum Brownian motion in classical environment is de-
veloped based on a thermodynamically enhanced nonlinear Schrödinger equation. The latter
is transformed via the Madelung transformation into a nonlinear quantum Smoluchowski-
like equation, which is proven to reproduce key results from the quantum and classical
physics. The application of the theory to a free quantum Brownian particle results in a non-
linear dependence of the position dispersion on time, being quantum generalization of the
Einstein law of Brownian motion. It is shown that the time of decoherence from quantum to
classical diffusion is proportional to the square of the thermal de Broglie wavelength divided
by the classical Einstein diffusion constant.

Keywords Quantum Brownian motion · Quantum nonlinearity · Einstein law ·
Decoherence

Brownian motion is the permanent irregular movement of a particle immersed in a medium.
Its rigorous description requires joint consideration of the coupled dynamics of the Brown-
ian particle and the medium, usually referred as thermal bath. Fundamental problems appear
in the Brownian motion theory if the quantum effects become important. For instance, at
time larger than the classical momentum relaxation time the Brownian motion of a quan-
tum particle in a classical environment is regularly described by the classical Einstein law
σ 2

x = 2Dt . It was recently demonstrated that this is not true due to the nonlinear nature of
the quantum relaxations [40]. The classical diffusion equation is linear owing to the Boltz-
mann entropy. More general definitions such as the Rényi and Tsallis entropies, however,
lead to nonlinear mean-field Fokker-Planck equations [13, 17, 37]. The important point here
is that the quantum mechanics is linear on the wave function, not on the probability den-
sity as the diffusion equation is. Hence, any probabilistic theory of the thermo-quantum
relaxation should be nonlinear [41] and the proposed linear semiclassical Smoluchowski
equations [1, 14] are only linearization around the equilibrium state [40]. As is shown the
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effect of a classical thermal bath on a quantum subsystem results in a nonlinear Schrödinger
equation [38]. Thus, the important superposition principle of the quantum mechanics is no
more applicable, which leads to decoherence [24, 36, 46]. The latter is usually described
via the Caldeira-Leggett [9] master equation enhanced by minimal extension with a purely
quantum position-diffusion operator to satisfy the Lindblad positivity requirements at some
initial states [3, 35, 45]. However, the Caldeira-Leggett master equation is linear due to
factorization of the initial density matrix and the enhancement above does not alter the
time-dependence of the Einstein law but simply increases the diffusion constant by quantum
effects. A heuristic nonlinear quantum relaxation theory led also to position-diffusion opera-
tor in the phase space, which persists even in the classical Klein-Kramers-like equation [39].

If the thermal bath consists of infinite number of harmonic oscillators, the entire dynam-
ics can be rigorously transformed into a stochastic generalized Langevin equation (GLE) for
the Brownian particle [4, 19, 20, 29, 44]. GLE can be derived in the general case via Mori
[31], Zwanzig [47] or Lee [28] formalisms. The main advantage of GLE is a relationship be-
tween the memory kernel and the autocorrelation function of the stochastic Langevin force
known as the fluctuation-dissipation theorem. GLE belongs to the class of linear response
theories as well. They account rigorously for the particle-bath Heisenberg dynamics aver-
aged, however, over an initial unperturbated bath distribution. Thus, the system and bath are
statistically separable, which is similar to the Caldeira-Leggett model. Their quantum levels
remain the same as in the isolated systems and only the occupation of states changes in time
due to their interaction. This is evident from the fact that the Brownian particle Planck con-
stant does not appear in the Langevin force spectral density, being the same for quantum and
classical Brownian particles. To prove this one can employ the method of quantum dynamics
with two Planck constants [16]. Hence, the present case of a classical thermal bath covers
also the well-known high-temperature approximation, where the Langevin force is classical
and only the Brownian particle is quantum. Let us examine the range of validity of a quan-
tum linear response theory. If a quantum particle is immersed in an equilibrium thermal
bath, the caused perturbation can be regarded as a small one if the particle kinetic energy is
lower than the bath thermal energy, i.e. if σ 2

p ≤ mkBT , where σ 2
p is the particle momentum

dispersion. On the other hand, the Heisenberg principle requires σxσp ≥ �/2. Thus, com-
bining these two inequalities it follows that the linear response theory is correct for position
deviations σx ≥ λT larger than the thermal de Broglie wavelength λT ≡ �/2

√
mkBT . How-

ever, this inequality corresponds to negligible quantum effects on the particle translation.
Therefore, a free quantum Brownian particle described by a linear response theory behaves
always as a classical one and that is why the Einstein law holds. This is not surprising since
the energy spectrum of a free particle in vacuum is continuous. It points out, however, that
the approximation of initially separable Brownian particle and bath distributions is rough.
The complete description of the quantum Brownian motion requires a nonlinear response
theory, which accounts also for the changes of the particle energy levels due to the local
force field of the bath particles and vice versa.

The Einstein law σ 2
x = 2Dt implies also that at any time the Brownian particle momen-

tum dispersion is the equilibrium one σ 2
p = mkBT [21]. Thus, the Heisenberg uncertainty

principle is violated at short times t < λ2
T /2D. Such a possibility of equilibrium in the mo-

mentum space and non-equilibrium in the coordinate space is only possible for classical
particles, since their momentum and coordinate distributions can be factorized. In quan-
tum mechanics these two distributions are interrelated and many problems appear due to
the ambiguous interpretation of the Wigner function as probability density. The correspond-
ing Fokker-Planck-like equations allow quicker relaxation of the momentum than that of
the coordinate, which will violate the Heisenberg principle at some times. In this case the



Int J Theor Phys (2009) 48: 85–94 87

Wigner function becomes negative, an unacceptable property for a distribution density. A
case, where the Einstein law holds for a quantum particle as well, is when the Brownian
particle is at equilibrium. In this case, at any time σ 2

x = ∞ but one can calculate its quasi-
static rate of change. The momentum distributions of a quantum particle at equilibrium and
non-equilibrium conditions, however, are always different. Thus, the time-dependent diffu-
sion coefficient calculated from the quantum Smoluchowski equation [41] will not coincide
with that one obtained from the equilibrium Green-Kubo formula [18]. The latter predicts
�σ 2

x = 2D�t in the case of a quantum particle moving in a classical bath since the equi-
librium momentum distribution of a free quantum particle is the classical Maxwell one. Let
us briefly explain the problem above by giving an example. Imagine at t = −∞ there is a
bath coupled to a Brownian particle being in a zero thick and infinitely deep potential well.
Nevertheless that the system is equilibrated, one knows exactly that the Brownian particle
is in the potential well at any time. At time t = 0 the external potential well is switched off
and the Brownian particle is free now to diffuse. If the Brownian particle is a classical one
the removal of the potential well will not disturb its momentum distribution. On the con-
trary, if the Brownian particle is a quantum one, after removal of the external potential its
initial momentum distribution will not be the equilibrium one following at t = ∞. Initially
the particle will possess infinite momentum dispersion and it will take some time until it is
dissipated in the bath to reach the equilibrium value mkBT . Since the Brownian particle and
bath are permanently coupled [43], the switch-off of the external potential will affect also
the bath particles. And because the potential well possesses infinite energy its removal can-
not be described by a linear response theory applicable to perturbations with typical energy
of the order of the thermal one. The problem can be solved via an evolution equation for the
probability density with delta-function initial distribution density, which is the aim of the
following theory.

In the present paper, our original approach [38] based on thermodynamic extension of
the Schrödinger equation is refined and further developed to describe properly the inertial
effects as well. The statistical correlations between the Brownian and bath particles are
accounted for thus leading naturally to dissipation of energy. Let us start most generally
with the Schrödinger equation for the coupled system Brownian particle and bath

i�∂tψ = (p̂2/2m + U + W + ĤB)ψ (1)

which will never be considered as separable in the present theory. Here ψ is the system wave
function, p̂ ≡ −i�∇ is the momentum operator of a Brownian particle with mass m,U(r) is
an external potential acting on the Brownian particle only, W(r,R) is a potential accounting
for the particle-bath interaction and ĤB is the pure bath Hamiltonian. The statistical nature
of the wave function implies the following decomposition ψ = �φ, where φ(r, t) is the
wave function of the Brownian particle and �(R, t |r) is the conditional wave function of
the bath. The square of the latter represents the conditional probability to find a specific con-
figuration R of the bath particles at time t if at this moment the Brownian particle occupies
the point r . It is important to note that φ and � are wave functions, i.e. they represent prob-
ability densities, which can be calculated from ψ directly. Thus, the decomposition above
is not arbitrary and it should preserve the probability and momentum of the whole system.
Substituting ψ = �φ in (1), multiplying the result by the complex-conjugated bath wave
function �∗ and integrating over the bath particles coordinates yields

i�∂tφ = (p̂2/2m+U +〈�|W |�〉+〈�| ĤB − i�∂t |�〉+ 〈
� | p̂�

〉 · p̂/m+ 〈
� | p̂2�

〉
/2m)φ

(2)
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The integral 〈�|W |�〉 ≡ W̄ represents the mean potential of the Brownian particle-bath
interaction. If the bath is a solid body W̄ is a periodic function on r , while a constant W̄ is
a good model for a fluid bath [43]. 〈�|i�∂t − ĤB |�〉 ≡ T S accounts obviously for energy
fluctuations solely related to the bath probability density changes caused by the Brownian
particle. Thus, it is attributed to the entropy S of the Brownian particle. The integral 〈�|p̂�〉
is real since � is normalized. Note that the operator p̂ acts on the conditional variable r ,
not on R. This integral has the meaning of momentum loss of the Brownian particle via
friction. For the Ohmic resistance it can be described as 〈�|p̂�〉 = −br in analogy with
the classical expression �p = −b

∫
ṙdt , where b is the friction coefficient of the Brownian

particle, which can depend on temperature T . Applying the momentum operator p̂ on this
relation again yields an expression for the last term in (2)

〈
� | p̂2�

〉
/2m = 3i�b/2m − 〈

p̂� | p̂�
〉
/2m (3)

The integral on the right hand side is also a real function and represents the heat emitted
by the Brownian particle in the bath via friction. 〈p̂�|p̂�〉/2m = −bA/m is proportional
to the action A ≡ ∫

p · dr and friction coefficient b in accordance to the classical expres-
sion �p2/2m = −b

∫
ṙ2dt following from the Rayleigh dissipative function. Substituting

all these integrals in (2), the latter acquires the form

i�∂tφ = [p̂2/2m + U + W̄ − T S + bA/m − b(p̂ · r + r · p̂)/2m]φ (4)

Since the entropy S and action A depend on the particle wave function φ, (4) is a non-
linear Schrödinger equation [34]. Hence, the superposition principle is not valid anymore
and the energy levels of the Brownian particle permanently change in time. The entropic
term in (4) represents an original thermodynamic DFT potential. One can model specific
statistical properties of the Brownian and bath particles via S(ρ), where ρ ≡ φ∗φ is the
probability density. For instance, the Gross-Pitaevskii BEC theory is based on the cubic
Schrödinger equation with a linear entropy S ∼ ρ. The Boltzmann entropy S ∼ −kB lnρ

leads to the logarithmic Schrödinger equation [5, 6, 15]. Note that S is the local entropy and
the Gibbs definition refers to its mean value

∫
Sρdr . While the entropy causes thermody-

namic decoherence, disappearing at zero temperature, the action A ≡ i� ln(φ∗/φ)/2 induces
frictional decoherence. The action term in (4) is similar to the Kostin frictional term in the
Schrödinger-Langevin equation [25, 26]. A logarithmic Schrödinger-Langevin equation is
also derived [32]. Finally, chemical reactions between the Brownian and bath particles can
be accounted for by an effective DFT potential W̄ (ρ) [23]. In fact the term W̄ − T S rep-
resents the Brownian particle chemical potential, i.e. the work necessary to remove quasi-
statically the Brownian particle from the bath at constant volume and temperature.

The further applications of the nonlinear Schrödinger equation (4) require specification
of the entropy. A transparent way to model S occurs when the complex wave function φ is
expressed by ρ and A via the well-known Madelung relation φ = √

ρ exp(iA/�). Substitut-
ing it in (4) leads to the following two equations corresponding to the imaginary and real
parts, respectively,

∂tρ + ∇ · (ρV ) = 0, m∂tV + mV · ∇V + bV = −∇(Q + U + W̄ − T S) (5)

where the velocity in the probability space is defined by V ≡ (∇A−br)/m. These equations
are similar to the Madelung quantum hydrodynamics [30] and the Bohmian mechanics [7],
where the quantum potential Q ≡ −�

2∇2√ρ/2m
√

ρ accounts for all quantum effects [11].
Note that in the classical limit Q disappears and the equations above reduce to those of
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the classical Brownian motion theory [21]. It points out also the shortcoming of the linear
response theory, where the probability density should be replaced by its equilibrium expres-
sion in Q to linearize (5). Since the equilibrium density for a free quantum Brownian particle
is uniform, the quantum potential vanishes and thus the linear theory description coincides
with the classical limit [40].

Let us consider first the case of zero temperature, where the entropic term in (5) drops out.
Thus, the particle-bath interaction is due only to scattering of the moving Brownian particle
on the static but movable bath particles. If one considers a constant force field U + W̄ =
−f x, the solutions of (5) at T = 0 are

ρ = exp[−(x − μ)2/2σ 2
x ]/

√
2πσ 2

x , V = ∂tμ + (x − μ)∂tσx/σx (6)

The mean value μ and the dispersion σ 2
x obeys the following dynamic equations

m∂2
t μ + b∂tμ = f, m∂2

t σx + b∂tσx = �
2/4mσ 3

x (7)

The first one reflects the Ehrenfest theorem. The second equation is nonlinear due to
the quantum potential. However, there are two simple quantum limits. In the case of
a single particle in vacuum (b = 0) the solution of (7) is the known expression σ 2

x =
σ 2

x (0) + [�t/2mσx(0)]2 for the spreading of a Gaussian wave packet with σp = �/2σx(0).
Considering now the hypothetical experiment with the potential well discussed before, ini-
tially σ 2

x (0) = 0 but at any other time the wave packet is already spread σ 2
x (t > 0) = ∞

due to the constantly infinite momentum dispersion. In the opposite case of strong fric-
tion, the first inertial term in (7) is negligible as compared to the second one and the so-
lution reads σ 4

x = �
2t/mb. The proportionality σx ∼ t1/4 is detected in numerical simu-

lations of electrons as a limit at vanishing hopping strength corresponding to T → 0. In
general, σx ∼ tα and the numerical simulations [12] show linear dependence of α on the
hopping strength, spanned between 0.25 and the ballistic 1 (the Einstein law corresponds to
α = 0.5). As seen, in the high friction limit σ 2

x is not proportional to t2 since the particle
is not in vacuum anymore. The bath not simply decreases the kinetic energy of the particle
but changes its energy spectrum as well via the harmonic potential bA/m in (4). At t = 0
again σ 2

x = 0 and σ 2
p = ∞, but with increasing time the particle loses its momentum disper-

sion σ 2
p = �

√
mb/t/4 due to the friction. This is compensated, however, by increase of the

position dispersion σ 2
x = �

√
t/mb to satisfy the minimal Heisenberg principle. Note that in

the limit case b → ∞ the initial state will last forever, since the particle cannot move. In
fact, the Brownian particle is trapped now in a kinetic well. In the quantum case, this will
restrict the relaxation of the momentum dispersion as well due to the Heisenberg principle.
According to the linear response theory, σ 2

p will drop to zero immediately due to the zero
classical momentum relaxation time m/b → 0 thus violating the Heisenberg principle since
σ 2

x = 0 as well. The reason that this does not happen in reality is that according to (4) the
distance between the particle energy levels tends also to infinity at b → ∞.

Equations (5) are heuristically proposed by Tsekov and Vayssilov [42]. Nevertheless,
that the attempt to specify the chemical potential solely on the equilibrium distribution fails,
at T = 0 the obtained equation coincides with (7). The problem is that in general T is the
local non-equilibrium temperature in (5). It is introduced in (4) as a parameter, reflecting the
complex chaotic motion of the bath particles. A very fast Brownian particle will obviously
destroy completely the local thermodynamic equilibrium. Hence, in order to be able to em-
ploy the equilibrium statistical temperature, which appears in the linear response theory via
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the initial bath distribution, one has to restrict the consideration to relatively low velocities.
Thus, one should linearize (5) on V to obtain

m∂2
t ρ = −b∂tρ + ∇ · (ρ∇F) + O(V 2) (8)

where the local free energy potential is introduced via the relation F ≡ Q + U + W̄ − T S.
Since the thermodynamic entropy S ≡ −(∂T F )ρ,b is the temperature derivative of the free
energy, one can express F by integration on T as follows

F + T Sβ=0 = kBT

∫ β

0
(Q + U + W̄ )bdβ + kBT ln(ρ/ρβ=0)

= kBT

[∫ β

0

1√
ρ

(Ĥ + 2∂β)
√

ρdβ

]

b

(9)

where the logarithm on the probability density appears as integration constant and repre-
sents the Boltzmann entropy, β ≡ 1/kBT and Ĥ ≡ p̂2/2m + U + W̄ is the Brownian par-
ticle Hamiltonian. The subscript b indicates that in this thermodynamic relation the friction
coefficient b must be considered constant during the integration on β . Note that the en-
tropy possesses non-Boltzmannian components as well due to the temperature dependence
of the average W̄ and quantum Q potentials. Thus, the latter leads to the following quantum
entropy

SQ ≡ kB

∫ β

0
βdQ (10)

which could probably explain the observed differences between the thermodynamic and
von Neumann entropy definitions at low temperature [22]. Since at infinite temperature the
local entropy is uniform, the term T Sβ=0 is a constant not affecting the Brownian motion.
Substituting (9) in (8) the following nonlinear differential equation is obtained

m∂2
t ρ + b∂tρ = kBT ∇ ·

[
ρ∇

∫ β

0

1√
ρ

(Ĥ + 2∂β)
√

ρdβ

]

b

(11)

which describes the quantum Brownian motion beyond the linear response. In the classical
limit (11) reduces at W̄ = 0 to the well-known telegraph-like equation [21]

m∂2
t ρ + b∂tρ = ∇ · (ρ∇U + kBT ∇ρ) (12)

which is linear. If the first inertial term is neglected, (11) converts into a nonlinear quantum
Smoluchowski equation [38]. Note that the nonlinear quantum-diffusive structure is univer-
sal and holds in any representation of quantum mechanics [39]. At zero temperature (11)
reduces to the following nonlinear equation

m∂2
t ρ + b∂tρ = ∇ · [ρ∇(Q + U + W̄ )] (13)

describing purely quantum diffusion in the field of an external potential. As seen, the quan-
tum potential drives the quantum diffusion, which particularly manifests itself into the tun-
neling effect. In the case of a free Brownian particle the distribution density is Gaussian and
(13) can be written in the usual telegraph form m∂2

t ρ + b∂tρ = (�2/4mσ 2
x )∇2ρ. Hence, the

quantum diffusion is driven by the minimal Heisenberg momentum uncertainty. Due to the
neglected quadratic velocity terms in (8), this equation reproduces the results from (7) at
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relatively high friction constant only. In the case of strong friction the equation above sim-
plifies further to a diffusion one with a dispersion-dependent quantum diffusion coefficient
DQ ≡ �

2/4mbσ 2
x [41].

At equilibrium, the probability density does not depend on time. Therefore, according to
(11) the equilibrium probability density ρe obeys the following equation

−2∂β

√
Zρe = Ĥ

√
Zρe (14)

where Z is the normalization factor. Equation (14) is a Schrödinger one, where the time is
replaced by the imaginary time �β/2i [27]. If the potential W̄ is temperature independent,
the solution of (14) is {ρn = Z−1 exp(−βEn)φ

2
n}, where {En,φn} are the eigenvalues and

orthonormal real eigenfunctions of the Brownian particle Hamiltonian, Ĥφn = Enφn. As is
expected, the quantum particle is described not only by its coordinate but also by its quantum
state. The probability density above is product of the spatial distribution in a given quantum
state and the canonical Gibbs probability for occupation of this state at a given temperature.
From the normalization it follows that Z is the canonical partition function

∑
exp(−βEn).

Equation (14) has the following formal solution (for simplicity W̄ = 0)

ρe = Z−1 exp

[
−βU −

∫ β

0
Q(ρe)dβ

]
= Z−1

sc exp{−βU − β2
�

2[3�U − β(∇U)2]/24m}
(15)

where the last semiclassical approximation is obtained via substitution of ρe by the classical
Boltzmann distribution ρcl = Z−1

cl exp(−βU) in the quantum potential Q. The semiclassi-
cal distribution (15) coincides with one derived by the Feynman-Vernon path integrals [2]
and contradicts to another one derived by the Wigner function [14]. This is not surprising,
however, since thermodynamic studies have also shown that from the Wigner-Kirkwood and
Feynman-Hibbs effective potentials only the latter agrees quantitatively with quantum sim-
ulations [10]. Applying the same linearization procedure on the quantum potential in (11)
results in the following linear semiclassical telegraph-like equation

m∂2
t ρ + b∂tρ = ∇ · (ρ∇Ueff + kBT ∇ρ) (16)

where Ueff ≡ U + β�
2[3�U − β(∇U)2]/24m is an effective potential accounting solely

for all quantum effects, while the diffusion constant remains classical. If additionally
one neglects the first inertial term and employs the approximation ρ∇Ueff ≈ ρ∇(U +
β�

2�U/24m) + β�
2∇ · (ρ∇∇U)/12m, being valid close to equilibrium, (16) reduces to

an equation with position-dependent diffusion coefficient [1, 2]. Naturally, the equilibrium
solution of (16) is the distribution (15). Due to the linearization around the equilibrium
Boltzmann distribution, (16) corresponds to relaxed quantum fluctuations and if the external
potential is omitted it reduces to the classical telegraph equation (12). Note that the rigor-
ous linearization of (11) is complex nontrivial mathematical problem, which certainly will
reflect in additional higher-order differential operators acting on the probability density.

It is difficult to solve in general the non-equilibrium equation (11) but if the acting po-
tential is a harmonic one U + W̄ = mω2

0x
2/2 − f x, the Gaussian distribution (6) is again

the solution. The corresponding mean value and dispersion obey the dynamic equations

m∂2
t μ + b∂tμ + mω2

0μ = f
(17)

m∂2
t σ 2

x + b∂tσ
2
x + 2m

(
ω2

0 − kBT

∫ β

0

�
2

4m2σ 4
x

dβ

)

b

σ 2
x = 2kBT
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The first equation represents the Ehrenfest theorem again. As seen, the quantum effect in the
second equation simply reduces the oscillator spring constant. This is expected, however,
since for Gaussian distributions the quantum potential is harmonic. Due to mathematical
difficulties it is impossible to solve (17) explicitly but some known results are recovered.
For instance, the equilibrium dispersion σ 2

x = (�/2mω0) coth(β�ω0/2) coincides with the
result from the quantum statistical thermodynamics.

Let us consider now the most interesting case of a free Brownian particle (ω0 = 0) in the
high friction limit relevant to the Einstein law. In this case (17) reduces to

∂tσ
2
x = 2D

(
1 + σ 2

x

∫ β

0

�
2

4mσ 4
x

dβ

)

b

(18)

where D ≡ kBT /b is the Einstein diffusion constant. The term in the brackets represents the
relative increase of the diffusion coefficient due to the quantum potential. In the case T = 0
(18) reduces to the overdamped limit of (7). Since the dispersion σ 2

x increases in time, at
large times the quantum term is negligible and the solution of (18) tends asymptotically to
the Einstein law σ 2

x = 2Dt . At small t the quantum term is dominant and one can neglect
now the unity in the brackets of (18). The solution of the remaining equation is again the
already derived expression for the purely quantum diffusion

σ 2
x = �

√
t/mb (19)

Another simple solution of (18) is the semiclassical limit σ 2
x = 2Dt + λ2

T ln(Dt/λ2
T )/3,

which is obtained by replacing of the dispersion in the quantum term with the classical
expression σ 2

x = 2Dt . Note that it becomes negative at short time but this is a defect of the
semiclassical approach since at t < λ2

T /2D the diffusion is predominately quantum. In this
case 2Dt is, in fact, the classical correction to (19) and the following superposition is the
semiquantum solution of (18)

σ 2
x = �

√
t/mb + 2Dt = 2

√
Dt(

√
Dt + λT ) (20)

Due to the different time-dependencies of the classical and quantum diffusions, (20) pos-
sesses correct limits both at short and large times. Thus, it is the first order quantum gener-
alization of the classical Einstein law of Brownian motion. A second order approximation
can be obtained by substituting of the superposition (20) on the right hand side of (18) and
integrating of the result on time and temperature. This iterative procedure can be repeated
as much as possible.

Another approximation, related now to the temperature dependence of σ 2
x , can be de-

rived by neglecting the quantum entropic effect. Thus, performing the integration in (18) at
constant σ 4

x yields [40]

∂tσ
2
x = 2D(1 + λ2

T /σ 2
x ) = 2D + 2DQ (21)

which differs from (7) by neglected inertial term and added thermal momentum dispersion of
the Brownian particle. Since σ 2

x increases with temperature, the solution of (21) is the upper
bound of the exact solution of (18). According to the nonlinear equation (21), the relative
quantum effect on the effective diffusion coefficient is proportional to the ratio between the
square of the thermal de Broglie wavelength λT and the dispersion σ 2

x . Hence, the quantum
effect vanishes at σx � λT thus leading to transition from quantum to classical diffusion. If
one attempts to linearize (21) around the equilibrium value σ 2

x = ∞, it reduces always to
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the classical limit σ 2
x = 2Dt . This confirms again that the quantum diffusion effect cannot

be described by the linear response theory. The integration of (21) is straightforward and the
result is

σ 2
x − λ2

T ln(1 + σ 2
x /λ2

T ) = 2Dt (22)

The explicit time-dependence of the dispersion σ 2
x = λ2

T {−1 −W−1[− exp(−1 − 2Dt/λ2
T )]}

involves a Lambert W -function [40]. This upper limit is better approximation of σ 2
x , since

it is always smaller than the superposition (20). The dispersion depends nonlinearly on time
in the beginning, but at large times the dependence is almost linear. A good approximation
σ 2

x = 2Dt + 2λ2
T ln(1 + √

Dt/λT ) via elementary mathematical functions is obtained by
substitution of σ 2

x in the quantum term of (21) with (20) and integration on time. At short
time it reduces to (20), while at large time the limit σ 2

x = 2Dt + λ2
T ln(Dt/λ2

T ) is always
larger than the exact semiclassical limit due to the neglected quantum entropy. Finally, if
∂tσ

2
x ∼ σ 2

x /t one would expect a good approximation of the solution of (18) in the form

σ 2
x = 2λT

√
Dt coth(λT /

√
Dt) (23)

which provides correct limits at short and long times. It is also closer to the exact semiclas-
sical limit.

As seen, the quantum effects are essential in the beginning. The characteristic time λ2
T /D

of dynamic decoherence marks the transition from quantum to classical diffusion. From the
inequality λ2

T /D > m/b one can estimate the necessary value of the friction coefficient
b > 2mkBT/� to be able to neglect the inertial but still to observe quantum effects. It cor-
responds to D < �/2m as well. As was mentioned in the introduction the classical Einstein
law violates the Heisenberg principle for times shorter than λ2

T /2D due to σ 2
p = mkBT .

According to (21), the non-equilibrium momentum dispersion is given by the expression
σ 2

p = mkBT + �
2/4σ 2

x , which is valid in the high friction limit only [41]. It satisfies the
Heisenberg principle at any time and reduces at infinite time to the known equilibrium
momentum σ 2

p = mkBT and position σ 2
x = ∞ dispersions. Note that the decay of σ 2

p in
time is non-exponential. This non-equilibrium expression describes spreading of a Gaussian
wave packet, which is continuously monitored by the thermal bath with measurement uncer-
tainty σx . This happens via reversible S and irreversible −bA/mT entropy changes, which
according to the Shannon theory are equivalent to information exchange [8]. Therefore, the
measurements are not a privilege of the human being only. They exist in any open system
divided to observable subsystem and non-observable interacting environment. The present
theory is not a Bohmian mechanics since the Bohmian trajectories, defined via Ṙ = V (R, t)

[7], are not involved. Equations (5) solely describe the probability density evolution and V

is the velocity in the probability space. However, it is recently shown [41] that a stochas-
tic Bohm-Langevin equation could be the background for the thermo-quantum diffusion,
thus making a bridge between the Brownian motion and the Bohmian mechanics. Possible
further generalizations can be explored via the Nelson stochastic mechanics [33].
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